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Abstract. This paper investigates the problem of the risk management for an 

import firm by using crude oil options. We propose a new risk measure (thereafter 

called CVaRMD) that synthesizes the mean and median deviation of the hedged 

portfolio loss to trace the extreme risk. The classical volatility models (GARCH-n, 
GARCH-t, GJR-n and GJR-t) are commonly-used in finance literature to depict the 

marginal distributions of the oil price and the exchange rate. Different from the 

time-consuming method of simulation, we employ Copula functions to deduce the 
cumulative distribution function of the hedged portfolio and then to calculate the 

extreme risk. Empirical studies demonstrate that GARCH-n and GARCH-t models 

are better to forecast the volatilities of Brent crude oil price and the exchange rate 

(CNY/USD)respectively. Frank copula better portrays the correlation structure 
between Brent crude oil price and the exchange rate. We find that hedging with 

crude oil options can reduce the extreme risk effectively. By comparing the 

skewness of the extreme loss under two risk measures of Conditional value-at-risk 
(CVaR) and CVaRMD, we find that the left deviation degree of the extreme loss 

under CVaRMD criterion is greater. The result of variance analysis further 

confirms this conclusion. That is to say, based on the strategy of minimizing 
CVaRMD, the extreme loss risk that the firm faces is relatively smaller. We further 

analyze the parameter sensitivities and give the firm some suggestions to choose 

the appropriate option contracts and decide its budget. 

Keywords: risk management, hedging with options, Conditional Value-at-Risk, 
CVaRMD, Copula function. 
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1. Introduction  

Crude oil price and exchange rate (especially the exchange rate with respect to 

USD) risk are prevail for an import or export firm. How to hedge these two risks is 
an important issue to be addressed by the firm. Intuition tells us to hedge against 
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major risk first. However, which risk is the major one is a controversial issue. To 

identify the mutual conduction mechanism between the crude oil price and the 

exchange rate, researchers have presented many econometric models to discover 
the source of risk. By using a copula approach and the DCC-MGARCH model, 

Brayek et al.(2015) examined the relationship between oil prices and the US dollar 

exchange rate. Rivieccio and Luca (2016) applied a vine copula approach to 

investigate the dynamic relationship between energy, stock and currency markets. 
Through their studies, some researchers find that the variability of exchange rates 

could spill over to the international crude oil market (see e.g. Salisu (2013) and 

Brahmasrene et al.(2015)). A reason is that USD is the major invoicing currency 
for international crude oil trading. And crude oils are commonly priced in US 

dollars. Therefore, fluctuations of oil prices highly depend on the dollar's exchange 

rate. Referring to other currencies, Ghosh (2011) employed GARCH and 
EGARCH models to examine the impact of oil price shocks on nominal exchange 

rate. Ito et al. (2013) investigated the relationship among Japanese firms’risk 

exposure of the exchange rate and found that, firms with greater dependency on 

sales in foreign markets had greater foreign exchange exposure. The discussions 
mentioned above imply that the exchange rate is a critical factor in the 

international trade. On the other hand, some researchers claimed that exchange 

rates are affected by crude oil prices. Chen et al. (2016) found that oil price shocks 
played more important role in dollar exchange rate variations. From different views 

of the relation between the crude oil price and the exchange rate mentioned above, 

we conclude that the crude oil price is interacted with the exchange rate. Neither 

commodity price nor exchange rate risk can be ignored. Thus, in this paper we 
consider the dependence between the crude oil price and the exchange rate. 

Many scholars have investigated the theoretical or empirical hedging 

motivations to avoid risks of commodity price and exchange rate. They conclude 
that the firms can basically opt linear (e.g. futures, forwards) or non-linear (e.g. 

options) instruments to hedge risk. One important strand of the existing literatures 

is related to the behavior of a competitive firm when futures market exists for 
hedging purposes. Two notable results of Separation Theorem and Full-hedging 

Theorem emerge. By taking a comparison, some other researchers believe that 

futures is a better hedging instrument than option. As we know, futures is a linear 

hedging instrument and it is suitable to be used to hedge linear risk. While 
nonlinear structure of option is designed to eliminate extreme the downside risk. 

Thus, options are proven to be useful to hedge the nonlinear risk because of their 

nonlinear profits. Wong (2009) demonstrated that the hedging role of currency 
options was due to two distinct sources of non-linearity including the 

multiplicative nature of the price and exchange rate and the marginal utility 

function of the firm. Moreover, relative to futures hedging, buying options for 
hedging has an advantage in avoiding market-to-market risk reflected as the 

liquidity risk. According to Committee on Payments and Settlement Systems, firms 

should take liquidity risk seriously when devising their risk management strategies. 



 

 

 

 

 

 

 
Crude Oil Options Hedging Based on a New Extreme Risk Measure 

 

277 
 

Either buying or selling futures for hedging, the firm is inevitably confront with the 
funding liquidity risk. However, the market-to-market risk absents when the firm 

only purchases options to hedge the risk exposure. Therefore, in this paper we 

assume that there is no currency option market while the crude oil option market is 
available for hedging oil price risk. 

To better describe the investment risk, a variety of risk measures are applied in 

finance. In the classical Markowitz model, risk is measured by variance or standard 

deviation. Due to the asymmetric risk in financial practice, the downside risk 
measure of Value-at-Risk (VaR) is widely used by financial institutions. By 

minimizing VaR, Ahn et al. (1999) presented an analytical solution of the option 

hedging problem for an institution. But, VaR is not a coherent risk measure and 
without subadditivity and convexity. To overcome the defects of VaR, conditional 

value at risk (CVaR) has arisen. CVaR (also known as expected shortfall (ES) or 

expected tail loss) is a coherent and spectral measure of risk. Then, CVaR is widely 

used as the objective function in portfolio theory. Melnikov and Smirnov (2012) 
studied the problem of partial hedging by constructing hedging strategies that 

minimized CVaR of the portfolio. However, CVaR portrays the mean of the 

extreme loss, it cannot reflect the extreme situation. With regard to the extreme risk, 
Wong and Ming (2009) investigated a new tool called median shortfall to measure 

risk, wherein the objective function was to minimize the median shortfall. 

Nevertheless, only using CVaR or median to measure the extreme risk has some 
deficiencies. For example, when CVaR or median of the loss are identical upon 

different strategies, evidence on CVaR seems powerless to decide which strategy is 

better. To overcome the deficiencies of the existing risk measure, we propose a new 

risk measure, which is the sum of CVaR and the median deviation (or MD for 
short), wherein MD is the first-order absolute moment of the shortfall loss median. 

The new risk measure is thereafter called CVaRMD. Since the mean and extreme 

loss are taken account, the main advantage of the proposed risk measure 
synthesizes both the overall and individual extreme risk. 

To estimate the risk of the hedged portfolio accurately, it is necessary to capture 

the non-linear inter-dependence of the asset returns. Copula functions are applied 
to describe the inter-dependence among innovations. Chen and Tu (2013) 

estimated the hedged portfolio's VaR using the conditional copula. Zhang et al. 

(2013) used Monte Carlo method to forecast VaR and ES of the international stock 

markets portfolio. Domino and Blachowicz (2015) used copula functions for 
modeling the risk of investment in shares traded on world stock exchanges. 

Rivieccio and Luca (2016) derived the classical and copula-based VaR conditional 

expected returns and covariance. Referring to hedging with options, Bajo and 
Romagnoli (2015) modeled the dependence structure through a copula function. 

They developed a theoretical hedging model with options. However, a defect of the 

theoretical model is the assumption of log-normal dynamics for both assets and 

quantity. It is a stylized fact that financial returns do not show any normal behavior. 



 

 
 

 

 

 
 

Xing Yu, Weiguo Zhang, Yongjun Liu 

_________________________________________________________________  

278 

 
 

GARCH models have become important in time series analysis, particularly in 

financial applications to analyze and forecast volatility. Deng et al. (2011) applied 

pair Copula to capture the inter-dependence structure between assets and 
constructed pair Copula-GARCH-EVT model to minimize CVaR. Dinicặ and 

Balea (2014) analyzed the evolution of U.S. natural gas spot and futures prices and 

estimated static and time varying optimal hedge ratios (OHR) through OLS method 

with different rolling window lengths and bivariate GARCH model with ECM 
errors (B-GARCH). Since the mean loss is obtained by the weighted method and 

ignores the extreme individual circumstances, CVaR cannot distinguish the better 

investment strategy when the values of CVaR are identical under different 
strategies. To our knowledge, among those studies that have considered options 

hedging, few aim to the extreme loss problem. The main contributions of this paper 

are as follows. We propose a new risk measure to cover with the tail extreme risk. 
The new risk measure called CVaRMD is a compound of the mean and the median 

deviation of the extreme loss. Furthermore, the existing simulation method of 

solving the option hedging models is generally time-consuming. By modelling the 

dependence structure through a copula function, we express the multivariate 
distribution function as a one dimension integral form. Based on this integration, 

we calculate the values of different risk measures with an easier routine. 

The remainder of this paper is structured as follows. Section 2 proposes a new 
risk measure called CVaRMD and then discusses the properties of the proposed 

risk measure. It gives the copula based representation of the hedged portfolio's 

distribution function and presents the computational procedure based on Copula-

GARCH method. Section 3 provides an empirical study to illustrate the ideas of oil 
options hedging model and shows the advantages of CVaRMD over CVaR with 

regard to reducing the extreme risk. Variance analysis is used to verify the 

superiority of the risk measure CVaRMD. Furthermore, we provide some risk 
management suggestions for the oil import firm. Finally, conclusions and potentials 

for future research are discussed in Section 4. 

 

2. The hedging models with options  

In this section, we first describe the call options hedging problem faced by an 

import firm. Then, we introduce a new risk measure, which can trace the extreme 

risk well. With the aim to minimize the extreme risk of the hedged portfolio, the 
optimal options hedging model is then presented. 

We assume that a firm currently (at time 0) expects to import a quantity 𝑄of the 

commodities that have a known current price 𝑃0. The current spot exchange rate, 

expressed in units of home currency per the foreign currency is 𝑆0. Let𝑃𝑇and𝑆𝑇be 

the uncertain commodity price and the exchange rate at a future time 𝑇.𝑝0denotes 

the premium of a call option written on 𝑃𝑇struck at 𝐾𝑝. Constraint on the hedging 

cost is motivated by practicality and liquidity. And the firm is supposed to hedge 

the naked position by buying amount of 𝑍𝑝call options given the cost constraint of 

𝐶. Since Ahn et al. (1999) pointed out that it was rational to fully spend the budget 
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for a better hedge effect, we let 𝐶 = 𝑆0𝑍𝑝 , 𝐶 = 𝑆0𝑍𝑝. Factors of IAS or other hedge 

accounting standards are assumed to be ignored. Under the assumptions mentioned 

above, when the firm buys commodity options for hedging, then the gain at 
maturity on the hedged portfolio is written by 

𝛱𝑇 = 𝑃0𝑆0 − 𝑃𝑇𝑆𝑇 + [(𝑃𝑇 − 𝐾𝑝)+ − 𝑝0]𝑆𝑇𝑍𝑝,           (1) 

where 𝑍𝑝is the position of the commodity options. 

 

2.1 A new risk measure CVaRMD 

The main objective in risk management is to evaluate and improve the 
performance of financial organizations in light of taken the risk. The common used 

risk measure is VaR. It is the maximum potential loss that a financial asset can 

suffer with a certainty probability during a certain holding period. For any 𝛼 ∈
(0,1), VaR of Π𝑇 at a given confidence level of1 − 𝛼is defined by 𝑉𝑎𝑅𝛼(𝛱𝑇) =
−𝑞𝛼(𝛱𝑇), where 𝑞𝛼(𝛱𝑇) is the 𝛼-quantile of 𝛱𝑇. However, VaR is criticized since 

it cannot capture the extreme risk. Then, CVaR was proposed to overcome the 

deficiencies of VaR. The definition of CVaR corresponding to 𝛱𝑇is 

                        𝐶𝑉𝑎𝑅𝛼(Π𝑇) = 𝐸[Π𝑇|Π𝑇 ≤ 𝑞𝛼(Π𝑇)].                                        (2) 
As seen in Eq.(2), CVaR is the mean of the loss that more than VaR. Although 

CVaR is believed to be superior to VaR in measuring financial risk and has been 

widely used in risk measure in recent years, it has two intuitive deficiencies. As we 
know, in the management of portfolio or hedging, investor generally decide the 

optimal strategies based on some risk control criteria, such as to minimize the risk 

of VaR or CVaR. We can insight into one deficiency of CVaR is that, when the 
values of CVaR upon different strategies are identical, investors cannot distinguish 

which strategy is better. Besides, since CVaR measures the mean loss, it does not 

take into account the potential individual extreme loss. We explain the 

aforementioned deficiencies of CVaR through an example. 
Example. Suppose that there are four different candidate investment strategies 

for the firm to choose. For simplicity, we suppose that every loss occurs with an 

equal probability of 0.2. Each row of Table 1 represents a strategy: 
 

Table 1. Strategies and loss 

Strategy 
Loss that larger than 

VaR 

Strategy Loss that larger than VaR 

Strategy.1 10 8 4 2 1 Strategy.3 226 225 224 223 222  

Strategy.2 7 6 5 4 3 Strategy.4 300 225 224 223 222 

 

Take strategy 1 as an example, the value of CVaR is -5, equally to the mean of -
10, -8, -4, -2 and -1. Respectively, CVaR of strategies 2-4 are -5, -24, -238.8. If the 

risk evaluation criteria of the strategies are CVaR, then Strategies 1 and 2 are no 

distinction. That is to say, based on the criteria of CVaR, we can't distinguish which 
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one is better between Strategy 1 and Strategy 2. In the aspect of the individual 

extreme loss, the largest loss in Strategies 1 is 10 and 7 in Strategies 2. Then, we 

can speculate that Strategy 1 is better than Strategy 2. While, how to describe the 
individual extreme loss quantitatively is another issue that needs to be addressed. 

We further examine a new criteria of median deviation, abbreviated MD. Here, MD 

is the expected median deviation of the extreme loss, wherein the median of 

Strategies 1-4 are -4, -5, -224 and -224. And the values of MD in the four 
Strategies are 3, 1.2, 1.2 and 2. We can find that the values of CVaR in Strategy 1-2, 

median in Strategy 3-4 and MD in Strategy 2-3 are respectively equal to each other. 

It is inferred that a separate criteria of CVaR, median or MD does not distinguish 
well among the strategies. To this end, we propose a new risk measure called 

CVaRMD (Marked with positive numbers), which is a combination of CVaR and 

MD. One reason for this consideration is that CVaR and MD can be used to 
measure the mean and the individual extreme risk. The values of CVaRMD in the 

four strategies are 8, 6.5, 225.2 and 240.8. From the new criteria, we conclude that 

Strategy 2 is the best, then Strategy 1, 3 and 4. In fact, Strategy 2 ensures the 

smaller mean loss and the individual extreme loss. 

Definition. (CVaRMD). LetΠ𝑇be the profit of an investment and𝑞𝛼(Π𝑇) be its 

𝛼 −quantile. DenoteΠ𝑇′as the random loss more than𝑞𝛼(Π𝑇), and𝑚is the median 

ofΠ𝑇′ . CVaRMD in this paper is defined by 

𝐶𝑉𝑎𝑅𝑀𝐷𝛼 = 𝐸(𝛱𝑇′ + |𝛱𝑇′ − 𝑚|).          (3) 

In Eq.(8), the first step of calculating CVaRMD is to determine the Cumulative 

Distribution Function (CDF) or the Probability Density Function (PDF)ofΠ𝑇′ . 

Lemma. Let𝐹Π𝑇
(𝑦) be the CDF ofΠ𝑇. Then the PDF ofΠ𝑇′is given by 

𝑓𝛱𝑇′ (𝑦) = {

𝑓𝛱𝑇
(𝑦)

𝐹𝛱𝑇
(𝑞𝛼(𝛱𝑇))

,   𝑦 < 𝑞𝛼(𝛱𝑇),

0,   𝑦 ≥ 𝑞𝛼(𝛱𝑇).
           (4) 

Proof. The CDF of Π𝑇′is defined as follows: 

𝐹𝛱𝑇′ (𝑦) = 𝑃(𝛱𝑇 ≤ 𝑦|𝛱𝑇 ≤ 𝑞𝛼(𝛱𝑇)) 

           =
𝑃(𝛱𝑇≤𝑦,𝛱𝑇≤𝑞𝛼(𝛱𝑇))

𝑃(𝛱𝑇≤𝑞𝛼(𝛱𝑇))
.                 (5) 

When𝑦 ≥ 𝑞𝛼(𝛱𝑇), then𝐹𝛱𝑇′ (𝑦) = 1; Otherwise, when𝑦 < 𝑞𝛼(𝛱𝑇), we have 

𝐹𝛱𝑇′ (𝑦) =
𝑃(𝛱𝑇≤𝑦)

𝑃(𝛱𝑇≤𝑞𝛼(𝛱𝑇))
=

𝐹𝛱𝑇
(𝑦)

𝐹𝛱𝑇
(𝑞𝛼(𝛱𝑇))

.              (6) 

Therefore, by taking the derivative of𝐹Π𝑇′ (𝑦), the PDF ofΠ𝑇′is expressed by 

Eq.(4). 

 

2.2 The optimal hedging model 
When the firm purchases the oil options to hedge the extreme loss risk, the 

optimal hedging problem based on CVaRMD is expressed in Problem(𝑃1): 
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(𝑃1. ) {
𝑚𝑖𝑛
𝑍𝑝,𝐾𝑝

𝐶𝑉𝑎𝑅𝑀𝛼(𝛱𝑇
𝑝),

𝑠. 𝑡.   𝐶 = 𝑝0𝑆̄𝑍𝑝.
         (7) 

where  Π𝑇
𝑝

  is described in Eq.(1) and𝐸(𝑆𝑇) = 𝑆̄. 

 

2.3 Representations of the hedged portfolio based on copula functions 

This section aims to determine the probability distributions ofΠ𝑇based on the 

derivations of famous Sklar's Theorem. Then, we express the CDF of the hedged 

portfolio in form of analysis.  
Theorem. Suppose that a firm buys commodity options for hedging the import 

risk. If the call option expires ITM, then the cumulative distribution function of Π𝑇
𝑝

 

is 

𝐹𝛱𝑇
𝑝(𝑢) = 1 − ∫ [

𝜕𝐹𝑃𝑇𝑆𝑇
(

𝑢−𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝
−1 (𝑤)

𝑍𝑝−1
)

𝜕𝑤
− 𝐷1𝐶𝑆𝑇 ,𝑆𝑇𝑃𝑇

(1 −
1

0

𝑤, 𝐹𝑆𝑇𝑃𝑇
(

𝑢−𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝
−1 (𝑤)

𝑍𝑝−1
))] 𝑑𝑤                                  (8) 

where𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝
(𝑡) = 1 − 𝐹𝑆𝑇

(
𝑃0𝑆0−𝑡

(𝐾𝑝+𝑝0)𝑍𝑝
), 

𝐹(𝑍𝑝−1)𝑃𝑇𝑆𝑇
(𝑥) = 1 − 𝐹𝑆𝑇𝑃𝑇

(
𝑥

𝑍𝑝−1
). 

If the commodity option is worthless, then the cumulative distribution function 

ofΠ𝑇
𝑝

is 

𝐹Π𝑇
𝑝(𝑢) = 1 − ∫ [

∂𝑣

∂𝑤
− 𝐷1𝐶𝑆𝑇 ,𝑆𝑇𝑃𝑇

(1 − 𝑤, 𝑣)]
1

0
𝑑𝑤,          (9) 

where 𝑣 = 𝐹𝑆𝑇𝑃𝑇
(𝐹𝑃0𝑆0−𝑝0𝑆𝑇𝑍𝑝

−1 (𝑤) − 𝑢) , 𝐹𝑃0𝑆0−𝑝0𝑆𝑇𝑍𝑝
(𝑡) = 1 − 𝐹𝑆𝑇

(
𝑃0𝑆0−𝑡

𝑝0𝑍𝑝
)  and 

𝐹−𝑆𝑇𝑃𝑇
(𝑥) = 1 − 𝐹𝑆𝑇𝑃𝑇

(−𝑥). 

Proof. If the call option expires ITM, the gain of the hedged portfolio is 

𝛱𝑇
𝑝 = 𝑃0𝑆0 − (𝐾𝑝 + 𝑝0)𝑆𝑇𝑍𝑝 + (𝑍𝑝 − 1)𝑃𝑇𝑆𝑇. 

In this case, we have 

𝐹𝛱𝑇
𝑝(𝑢) = ∫ 𝐷1

1

0

𝐶𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝 ,(𝑍𝑝−1)𝑃𝑇𝑆𝑇
(𝑤, 𝐹(𝑍𝑝−1)𝑃𝑇𝑆𝑇

(𝑢

− 𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝

−1 (𝑤))) 𝑑𝑤. 

Since𝑃0𝑆0 − (𝐾𝑝 + 𝑝0)𝑆𝑇𝑍𝑝and(𝑍𝑝 − 1)𝑃𝑇𝑆𝑇decrease with regard to  𝑆𝑇   and 

𝑃𝑇𝑆𝑇, then the distributional function of  Π𝑇
𝑝  

is 
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∫ 𝐷1

1

0

[𝑤 + 𝐹(𝑍𝑝−1)𝑃𝑇𝑆𝑇
(𝑢 − 𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝

−1 (𝑤)) − 1

+ 𝐶𝑆𝑇 ,𝑆𝑇𝑃𝑇
(1 − 𝑤, 1

− 𝐹(𝑍𝑝−1)𝑃𝑇𝑆𝑇
(𝑢 − 𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝

−1 (𝑤)))] 𝑑𝑤 

On the other hand, the probability distribution function of 𝑃0𝑆0 − (𝐾𝑝 + 𝑝0)𝑆𝑇𝑍𝑝is 

𝐹𝑃0𝑆0−(𝐾𝑝+𝑝0)𝑆𝑇𝑍𝑝
(𝑡) = 1 − 𝐹𝑆𝑇

(
𝑃0𝑆0−𝑡

(𝐾𝑝+𝑝0)𝑍𝑝
).       (10) 

Similarly, the distributional function of (𝑍𝑝 − 1)𝑃𝑇𝑆𝑇 is 

𝐹(𝑍𝑝−1)𝑃𝑇𝑆𝑇
(𝑥) = 1 − 𝐹𝑆𝑇𝑃𝑇

(
𝑥

𝑍𝑝−1
).          (11) 

From Eqs.(10) and (11), we obtain the cumulative distribution function when 
the call option expires ITM. When the pay-off of the call option at maturity is 

equal to 0, the gain is expressed by𝛱𝑇
𝑝 = 𝑃0𝑆0 − 𝑝0𝑍𝑝𝑆𝑇 − 𝑆𝑇𝑃𝑇.  

Since 𝐹𝑃0𝑆0−𝑝0𝑆𝑇𝑍𝑝
(𝑡) = 1 − 𝐹𝑆𝑇

(
𝑃0𝑆0−𝑡

𝑝0𝑍𝑝
),  and 𝐹−𝑆𝑇𝑃𝑇

(𝑥) = 1 − 𝐹𝑆𝑇𝑃𝑇
(−𝑥),  we 

thus have the distribution functions of 𝑃0𝑆0 − 𝑝0𝑍𝑝𝑆𝑇and−𝑆𝑇𝑃𝑇.When the option 

is out of the money, the cumulative distribution function is 

𝐹𝛱𝑇
𝑝(𝑢) = ∫ 𝐷1

1

0

𝐶𝑃0𝑆0−𝑝0𝑆𝑇𝑍𝑝 ,−𝑆𝑇𝑃𝑇
(𝑤, 𝐹−𝑆𝑇𝑃𝑇

(𝑢 − 𝐹𝑃0𝑆0−𝑝0𝑆𝑇𝑍𝑝

−1 (𝑤))) 𝑑𝑤. 

Due to the distributional functions of𝑃0𝑆0 − 𝑝0𝑍𝑝𝑆𝑇and−𝑆𝑇𝑃𝑇, the cumulative 

distribution function ofΠ𝑇
𝑝

is shown in the Theorem. 

 

3. Empirical studies and comparatively analysis 

In this section, we provide an empirical study to illustrate the ideas of our 

proposed model and show the advantages of CVaRMD over CVaR in reducing the 

extreme risk. Based on the data collected from Database, we first model the 
marginal distributions and the dependence structure between the data series. 

Depending on the given computational procedure, we calculate the cumulative 

distribution function of the combined gain or loss of the hedged position at time𝑇. 
Using the entire distribution function, we further compute the values of CVaR and 

CVaRMD. Then, the optimal strategies that minimize the extreme risk are derived. 

Finally, we assess the performance of the options hedging model and the different 

risk measures. 
 

3.1 Data, the marginal distributions and dependence structure 

The domestic enterprises in China, especially the refinery enterprises are 

importing more crude oil under the trend of the crude oil imports increasing in the 

foreign markets. We assume that a Chinese firm imports a unit crude oil over the 

next week. To pursue the abundant amount of available data, our data include 

weekly Brent crude oil price and the exchange rate(CNY/USD). The data are 
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selected from July 8, 2011 to October 28, 2016 and the data sources are from Wind 

database. At initial time, the Brent crude oil price and the exchange rate are𝑃0 =

45.6and𝑆0=6.754. We express rates of the crude oil price and the exchange rate by 

their logarithm of 𝑟𝑝 = 𝑙𝑛(𝑃𝑇) − 𝑙𝑛(𝑃0) and 𝑟𝑠 = 𝑙𝑛(𝑆𝑇) − 𝑙𝑛(𝑆0) , 

where𝑃𝑇and𝑆𝑇are the crude oil price and the exchange rate at time𝑇. The weekly 

log-returns of the crude oil price and the exchange rate are shown in Fig.1. 

 
(a) Returns of the crude oil price      (b) Returns of the exchange rate 

Fig. 1. Weekly returns of the crude price and the exchange rate CNY/USD 
 

From Fig.1, we can find that returns of the crude oil price and the exchange rate 

show obvious heteroscedasticity, volatility, aggregation and sustainability. Then, 
ARCH effects and serial correlation of the returns are tested. The test results are 

presented in Table 2. 

 

Table 2. Descriptive statistics of the crude oil price and the exchange rate 

Statistics crude oil price CNY/USD Statistics crude oil price CNY/USD 

Mean -0.0087 0.0002 Skewness -0.2031 0.9298 

max 0.1752 0.0215 Kurtosis 3.0029 4.3297 

min 0.2055 0.0133 P-value 0.500 0.0063 
Std.Dev 0.0832 0.0074 JB-statistic 0.4952 15.6773 

 

Table 2 exhibits the descriptive statistics of the log-returns. Crude oil price 
shows higher volatility, as explained by the standard deviation. The most important 

inference from the descriptive analysis is that the null of Jacque Berra (JB) test is 

rejected. The results indicate that the return of the crude oil price is normally 

distributed. While the exchange rate return is not normally distributed. Therefore, 
we use GARCH models to examine the ARCH effect.  ARCH-LM test shows that 

the crude oil price is a stationary stochastic process, but has heteroskedasticity. Our 

marginal models are built on the classical GARCH and GJR models. Model 
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parameters are estimated by using the MLE method. Statistical values of the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are 

reported in Table 3. 

Table 3. Values of AIC and BIC criterion of GARCH models 
 Model AIC BIC  Model AIC BIC 

Oil 

price 

GARCH-n -158.6302 -138.4207 CNY/

USD 

GARCH-n -497.2833 -478.0737 

GARCH-t -155.4003 -126.5859 GARCH-t -503.7601 -478.9458 

GJR-n -158.5789 -129.7645 GJR-n -499.0773 -470.2630 

GJR-t -154.6951 -116.2760 GJR-t -502.0352 -463.6161 

 

Based on the criterions of AIC and BIC of the aforementioned GARCH models, 
from Table 3, we can find that, respectively, the crude oil price and the exchange 

rate are well fitted by GARCH-n and GARCH-t models. LM(K) statistic indicates 

that ARCH effects are likely to be found in both returns of the crude oil price and 
the exchange rate. Before proceeding with the evaluation of the hedging model, we 

estimate the parameters of the GARCH models. Tables 4 demonstrates the 

maximum likelihood results of GARCH-n and GARCH-t models. 

Table 4.Estimated parameter values of GARCH-n and GARCH-t models 

Models GARCH-n GARCH-t 

Assets Brent oil price Exchange rate 

Parameter Value Std Value Std 

C -0.0057 0.0100 -8.1766e-04 7.4826e-04 
K 4.1553e-04 5.2288e-04 2.7022e-06 6.4787e-06 

GARCH 0.6804 0.1362 0.8552 0.2292 

ARCH 0.2785 0.1591 0.1117 0.1769 
DOF   4.6223 2.4450 

LLF 82.8151  257.8801  

In what follows, we determine the dependence structure between the crude oil 

price and the exchange rate. Then, we select the best fitted copula function based 
on AIC and BIC criterions. Values of AIC and BIC are given in Table 5. 

 

Table 5. AIC and BIC criterions of copula models 

Criterion Gaussian-n Student-t Frank Clayton Gumbel 

AIC 0.3770 0.3241 0.3137 2 2.13 

BIC 2.6537 2.6008 2.5904 4.2767 4.4710 

 

From Table 5, we can find that according to the AIC and BIC values of all kinds 
of copulas, the Frank copula is the best fitting function to describe the dependence 

structure of the bivariate return series of the crude oil price and the exchange rate. 

 

3.2 Application of the options hedging models 

In this section, we apply the presented hedging model to a hypothetical firm 

wishing to hedge a unit Brent oil for a period of a week. The firm desires to hedge 
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the oil price risk using number of𝑍𝑝of call options. We assume that the firm allots a 

budget amount of𝑐, which is equal to 2%, 6%, 11% and 16% of the naked position. 

According to the optimal hedging model and its solution steps, we obtain the 
optimal position of oil options and the values of CVaR and CVaRMD. Fig.2 

expresses the results at the 95% confidence level of the hedged position. 

 

 
(a)CVaR with regard to call moneyness      (b) CVaRMD with regard to call moneyness 

Fig 2. Sensitivity of call moneyness 

 
Fig.2 depicts the sensitivities of the call put moneyness (i.e. the ratio between 

the strike price and the current price of Brent oil price). Horizontal axis expresses 

the percentage of the spot position. The optimal strike price with larger budget is 

smaller. The call option with smaller strike price corresponds to a higher premium. 
The result is not surprising because more budget can support the firm to buy more 

options for hedging. For the other side, if the firm does not use oil options for 

hedging, its budget on buying option is 0. Since we find that the more the budget is, 
the less the risk is, it is unwise for the firm not to buy oil options for hedging 

against the loss risk. We also find that the optimal strike price which minimizes 

CVaR or CVaRMD of the hedged portfolio is affected by the amount of cash spent 
on the hedging. This result confirms with Bajo et al.(2014). 

The previous conclusions are upon the confidence level of 0.05. While different 

decision makers have different confidence levels. We then study how the risk 

preferences of the firm affect the hedging effect. In Table 6, the budget is 
accounted for 1% of current value. 

 

Table 6.CVaR and CVaRMD under different criterion 

𝛼 CVaR CVaRMD 𝛼 CVaR CVaRMD 

0.01 11.1712 12.4463 0.025 9.0986 10.6875 

0.05 7.3424 9.1313 0.1 5.3911 7.3424 
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In Table 6, we see that CVaR and CVaRMD decrease with regard to the 

confidence level. The results are consistent with the reality. When the hedger's risk 

aversion is larger, she/he cares the loss in a greater scope. Then the mean loss 
becomes smaller. In another aspect, hedgers with larger risk aversion are 

recommended to buy options for hedging. 

 

3.3 Discussion on the new risk measure 
Turning to another core of our empirical analysis, we evaluate the different 

hedging criterion of CVaR and CVaRMD. From the definitions of CVaR and 

CVaRMD, we can conclude that CVaR captures the mean loss while neglects the 
individual extreme loss. However, CVaR proposed in this paper traces both the 

mean and the individual extreme loss. To examine the robustness of the new risk 

measure in reducing the extreme risk, we simulate 200 possible future situations 
and compute the skewness values of the extreme loss under the strategies of 

minimizing CVaR or CVaRMD. The comparison results are shown in Fig.3. 

 
Fig.3 Skewness of the extreme loss on minimizing CVaR or CVaRMD 

 

From Fig.3, we find that the negative skewness of CVaRMD minimizing 
criterion is remarkably larger than CVaR minimizing criterion. We know that a 

sequence with a larger negative skewness shows larger left deviation degree. In 

particular, when the return of an investment has a larger negative skewness, it is 

favorable toward investors. 
To further identify the superiority of CVaRMD to CVaR, we first compare the 

variances under the two strategies that minimizing CVaRMD or CVaR. We use the 

Kruskal-Wallis test to present the comparison results. Here, the Kruskal-Wallis test 
is a nonparametric version of classical one-way ANOVA, and an extension of the 
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Wilcoxon rank sum test to more than two groups. In this part, we refer to the 
routine of Bensoussan et al. (2014), who aimed to determine how various aspects 

weigh in the users' trust in the cloud computing technology using the Kruskal-

Wallis test. With the Kruskal-Wallis test statistic, based on the sum of ranks for 
each of the samples, if the medians of two or more categories of respondents differ 

in each of the first-level hypothesis formulated at 0.05 level of significance, thus 

resulting in the following second-level hypotheses: 

H0: the groups' medians are all equal in each of the first-level hypothesis 
H1: at least one median is different in each of the first-level hypothesis 

The output matrix 𝑐 of the pairwise comparison results from a multiple 

comparison test using the information contained in the stats structure. And we 

obtain that𝑐 = [1 2 26.7703 49.4300 72.0897 0.0000].These numbers indicate that 

the mean of group 1 minus the mean of group 2 is estimated to be 49.4300, and at 

95% confidence interval for the true difference of the means is [26.7703, 72.0897]. 

The p-value for the corresponding hypothesis test that the difference of the means 
of groups 1 and 2 is significantly different from zero is 0.0000. We also find that 

the confidence interval does not contain 0, so the difference is significant at the 5% 

significance level. The p-value of 0.0000 also indicates that the difference of the 
means of groups 1 and 2 is significantly different from 0. The ANOVA table 

provides additional test results, and the box plot in Fig.4 visually presents the 

summary statistics for each column. 

 

Table 7.Kruskal-Wallis ANOVA 
Source SS df MS Chi-sq Prob>Chi-sq 

Columns 244332.5 1 244332.5 18.28 1.90771e-05 

Error 5088956.5 398 12786.3   

Total 5333289 399    

 

The returned value of𝑝indicates that kruskalwallis rejects the null hypothesis 
that the two skewness values of the extreme loss come from the same distribution 

at a 1% significance level. For more intuitive comparison on CVaR and CVaRMD, 

we present the Kernel Cumulative Distribution Functions of the skewness values of 
the extreme loss in Fig.5: 
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Fig 5. Kernel Cumulative Distribution Function of the skewness 

 

If we compare the performance of the two risk measures by the skewness values 

of the extreme loss based on the Kernel Cumulative Distribution Functions, we 
should choose the strategy whose distribution function lies above the other because 

the probability of getting a larger negative skewness is larger for the strategy with a 

stochastically smaller distribution function. This method of comparison is common 

in finance and it is also known in probability theory as the first order stochastic 
dominate (Bodnar (2015)). From Fig.5, we observe that the criterion of CVaRMD 

over-performs CVaR. The probability of larger negative skewness values of the 

extreme loss is larger. To summarize, if the firm makes hedging strategy according 
to the criterion that minimizing CVaRMD, the extreme risk including the mean and 

the individual risk are relatively small. 

 

4. Conclusions 
In this paper, we examine the optimal crude oil hedging problem under the 

uncertainties of oil price and the exchange rate. The contributions of this paper is 

twofold to the existing studies. First, the dependence structure between oil price 
and the exchange rate is modeled through a copula function. And we represent the 

cumulative distributions of the combined gain or loss on the hedged position using 

copula functions. To do this, the options hedging model can be solved efficiently. 
Second, we propose a new risk measure called CVaRMD which is based on the 

integrated information of CVaR and the median deviation of the extreme loss. And 

the new risk measure incorporates the tail information including tail mean loss and 

tail extreme loss. According to the strategy of minimizing CVaRMD, the loss has a 
greater negative skewness, which is beneficial to the firm to hedge against the 

mean and individual extreme loss. 
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Specifically, we apply Copula-GARCH method to estimate CVaR and 
CVaRMD of the hedged portfolio. Firstly, we employ GARCH and GJR process 

allowing for different error distributions of standard normal or students-t to model 

the marginals. Based on AIC and BIC criterions, we find that GARCH-n marginal 
distribution is best-fitted for the Brent oil price and GARCH-t model is best to fit 

the time series of the exchange rate. Frank copula describes the dependence 

structure of the return series quite well. For the two risk measures of CVaR and 

CVaRMD incorporated in this paper, we study sensitivities of the strike price and 
budge. It finds that crude oil options hedging helps the firm to hedge the oil 

importing risk. The optimal strike price is affected by the amount of cash spent on 

the hedging. But the optimal strike price of oil option decreases with respect to the 
budget. To illustrate the advantages of the proposed risk measure, we simulate 

future scenarios of the returns. Through comparison analysis, we find that the 

extreme loss from CVaRMD is more left skew than the ones from CVaR. Therefore, 

CVaRMD is superior to CVaR in controlling the extreme loss risk. 
Copula-GARCH methodology is quite flexible to model the dependence 

between two assets or risk factors. One can further use different marginal 

distributions. As to the selection of a specific marginal distributions, more studies 
on the volatility modelling are needed. 
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